Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Three 5 H -indeno[1,2-c]pyridazin-5-one derivatives, potent type-B monoamine oxidase inhibitors

Raphaël Frédérick,*£ Bernadette Norberg, François Durant, Frederic Ooms§ and Johan Wouters©

Laboratory of Molecular and Structural Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
Correspondence e-mail: raphael.frederick@fundp.ac.be

Received 17 May 2004
Accepted 16 June 2004
Online 11 August 2004

The structures of three compounds, namely 7-methoxy-2-[3-(trifluoromethyl)phenyl]-9H-indeno[1,2-c]pyridazin-9-one, $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$, (Id), 6-methoxy-2-[3-(trifluoromethyl)phenyl]$9 H$-indeno[1,2-c]pyridazin-9-one, $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$, (II d), and 2-methyl-6-(4,4,4-trifluorobutoxy)-9H-indeno[1,2-c]pyridazin9 -one, $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$, (IIf f, which are potent reversible type-B monoamine oxidase (MAO-B) inhibitors, are presented and discussed. Compounds ($\mathrm{I} d$) and (II d) crystallize in a nearly planar conformation. The crystal structures are stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The packing is dominated by $\pi-\pi$ stacking interactions between the heterocyclic central moieties of centrosymmetrically related molecules. In compound (IIf), the trifluoroethyl termination is almost perpendicular to the plane of the ring.

Comment

The $5 H$-indeno[1,2-c]pyridazin-5-ones (Ia)-(Ie) have been described by Testa (Kneubühler et al., 1993, 1995) to be reversible and selective MAO-B inhibitors. As part of a project aiming to improve the biological activity of compounds of this family, we recently described a general MAO-B pharmacophore. This led to the rational design of compounds (If) and (IIf), bearing a hydrophobic 4,4,4-trifluorobutoxy side chain on positions 7 and 6 , respectively, of the indeno[1,2-c]pyridazin-5-one ring (Ooms et al., 2003). [The values of IC_{50} given for compounds ($\left.\mathrm{I} a\right)-(\mathrm{I} d)$ are taken from Kneubühler et al. (1995).]

We intended to synthesize ($\mathrm{I} f$), possessing the side chain on position 7, using the strategy successfully used by Testa (Kneubühler et al., 1995) to produce two related compounds,

[^0]viz. (I c) and (Id). Surprisingly, we found that the resulting product possesses the isomeric structure (II f), with the side chain on position 6.

	R_{1}	CF_{3}	$\mathrm{IC}_{50}(\mu M)$
(Ia)	H	p	0.09
(Ib)	H	m	0.28
(Ic)	HO	m	5.10
(Id)	MeO	m	1.31

R_{1}
(Ie) McO
(If) $\mathrm{CF}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{O}$

In order to validate the results obtained by Testa, we repeated the synthesis of ($\mathrm{I} d$). We found that the major isomer (47% yield, yellow, m.p. $487 \mathrm{~K},{ }^{1} \mathrm{H}$ NMR spectrum identical to that published) was in fact (IId) and not ($\mathrm{I} d$), as proved unambiguously by the X-ray crystal data. The minor product (3.5% yield, orange, m.p. 477 K), on the other hand, presented the structure ($\mathrm{I} d$), again proved by X-ray crystallography.

Compound (Id) (Fig. 1), the minor isomer, crystallized in the triclinic $P \overline{1}$ space group. This compound possesses the methoxy group on position C 7 of the 5 H -indeno[1,2-c]pyridazine ring $\left[\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9\right.$ torsion angle -178.7 (2) ${ }^{\circ}$]. The dihedral angle between the phenyl ring D and the adjacent pyridazine ring C is approximately 19° (Fig. 1). Atom C 10 acts as a donor for a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with carboxyl atom O1 (Table 1). The crystal packing is dominated by $\pi-\pi$ stacking interactions between the centrosymmetrically related molecules (Fig. 2 and Table 2). The stacking geometry is such that rings A, B and C of one molecule are superimposed on rings C, B and A, respectively, of a symmetry-related molecule at $(1-x, 1-y,-z)$. On the

Figure 1
The molecular structure of compound (Id). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. For clarity, only one of the disordered CF_{3} groups is shown.
other hand, $\pi-\pi$ stacking interactions arise between one molecule and its symmetry-related molecule at ($-x, 2-y$, $-z$) (Table 2).

(i)

Figure 2
A packing diagram for compound (Id), illustrating the $\pi-\pi$ stacking network. For clarity, H atoms have been omitted and only the major conformations of the disordered F atoms are shown. [Symmetry codes: (i) $1-x, 1-y,-z ;$ (ii) $-x, 2-y,-z$.]

Figure 3
The molecular structures of the two molecules of compound (IId). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. For clarity, only one of the disordered CF_{3} groups is shown.

Compound (IId) (Fig. 3), the major isomer, also crystallized in the triclinic $P \overline{1}$ space group. In this compound, the asymmetric unit contains two independent molecules, one, (II $d A$), with the methoxy group located on position 6 (atom C 8) of the 5 H -indeno $[1,2-c$]pyridazine ring and defined by a $\mathrm{C} 19-\mathrm{O} 2-$ C8-C9 torsion angle of 169.8 (2) ${ }^{\circ}$, and the other, (IIdB), with the methoxy group also located at the same position 6 (atom C28) but with a value for the same torsion angle of $0.5(3)^{\circ}$. This leads to an arrangement in which atom C10 in molecule $(\operatorname{II} d A)$ acts as a donor for a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with carboxyl atom O 3 in (II $d B$) (Table 3). Atoms C30 and C33 in molecule ($\mathrm{II} d B$) are also donors for weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with carboxyl atom O 1 of a neighbouring ($\mathrm{II} d A$) molecule (Table 3). The

Figure 4
A packing diagram for compound (II d), illustrating the $\pi-\pi$ stacking network. H atoms have been omitted for clarity. [Symmetry codes: (i) $1-x, 2-y,-z$, for (IIdA); (ii) $1-x, 1-y,-z$, for (IIdA); (iii) $2-x$, $1-y,-z$, for $(\mathrm{II} d B)$.]

Figure 5
The molecular structure of compound (IIf). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 6
A packing diagram for compound (IIf), illustrating the $\pi-\pi$ stacking network leading to a parallel arrangement along the a axis. H atoms have been omitted for clarity.
crystal packing is dominated by $\pi-\pi$ stacking interactions between the heterocyclic central moiety of (II $d A$) and its centrosymmetrically related structure at $(1-x, 2-y,-z)$, and between the heterocyclic central moiety of (II $d B$) and its centrosymmetrically related structure at $(2-x, 1-y,-z)$ (Fig. 4 and Table 4). Other $\pi-\pi$ stacking interactions arise between ($\operatorname{II} d A$) and a symmetry-related ($\mathrm{II} d B$) molecule situated at $(1-x, 1-y,-z)$, and also between $(\operatorname{II} d B)$ and a symmetry-related (IIdA) molecule at ($1-x, 1-y,-z$) (Fig. 4 and Table 4).

Derivative (IIf), bearing a hydrophobic 4,4,4-trifluorobutoxy side chain at position 6 (atom C8), crystallized in the monoclinic $P 2_{1} / c$ space group (Fig. 5). The molecular structure of (IIf) shows a nearly planar conformation of the 5 H -indeno[1,2-c]pyridazin-5-one ring, except for the trifluoroethyl termination of the side chain, which is almost perpendicular to the plane of the ring $[\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$ torsion angle $-60.6(5)^{\circ}$ and $\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$ bond angle $\left.116.6(4)^{\circ}\right]$. Atom C 14 acts as a donor for a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with carboxyl atom O 1 of a neighbouring molecule (Table 5). The crystalline cohesion is maintained by $\pi-\pi$ stacking interactions between one molecule and the translated structures at $(x-1, y, z)$ and $(1+x, y, z)$, leading to a parallel arrangement along the a axis (Fig. 6).

Experimental

The syntheses of compounds ($\mathrm{I} d$), ($\mathrm{I} \mathrm{d} d$) and (IIf) will be reported elsewhere. The compounds were crystallized by slow overnight evaporation of acetonitrile solutions.

Compound (Id)

Crystal data
$\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=356.30$
Triclinic, $P \overline{1}$
$a=7.768$ (2) \AA
$b=8.750$ (2) \AA
$c=12.703$ (2) \AA
$\alpha=89.01$ (1) ${ }^{\circ}$
$\beta=81.59$ (2) ${ }^{\circ}$
$\gamma=68.05(1)^{\circ}$
$V=791.6$ (3) \AA^{3}

Data collection

Enraf-Nonius CAD-4
diffractometer
$\theta / 2 \theta$ scans
Absorption correction: analytical
\quad (Alcock, 1970)
$\quad T_{\min }=0.743, T_{\max }=0.959$
3495 measured reflections
3273 independent reflections
2692 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.139$
$S=1.03$
3273 reflections
263 parameters
H-atom parameters constrained

Compound (IId)

Crystal data
$\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=356.30$
Triclinic, $P \overline{1}$
$a=10.306$ (1) \AA
$b=10.798$ (1) \AA
$c=14.986$ (1) A
$\alpha=73.453(6)^{\circ}$
$\beta=79.592(7)^{\circ}$
$\gamma=89.422(7)^{\circ}$
$V=1570.8(2) \AA^{3}$
$Z=2$
$D_{x}=1.495 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 24 reflections
$\theta=14-47^{\circ}$
$\mu=1.05 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow $0.30 \times 0.18 \times 0.04 \mathrm{~mm}$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=75.1^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 0$
$l=-15 \rightarrow 15$
3 standard reflections every 200 reflections frequency: 60 min intensity decay: 3%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0722 P)^{2}\right. \\
& \quad+0.1799 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.004 \\
& \Delta \rho_{\max }=0.20 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.507 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \text { Cell parameters from } 24 \\
& \quad \text { reflections } \\
& \theta=18-42^{\circ} \\
& \mu=1.06 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, yellow } \\
& 0.38 \times 0.15 \times 0.04 \mathrm{~mm}
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$ for $(I d)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.93	2.54	$3.408(2)$	156

Symmetry code: (i) $-x, 1-y,-z$.

Table 2
Geometry of short $\mathrm{Cg} \cdots C g$ ring interactions for ($\mathrm{I} d$).
$C g i$ and $C g j$ denote the centres of gravity for rings i and j in ($\mathrm{I} d)$, and α is the dihedral angle between the planes of rings i and j.

$C g i$	$C g j$	$C g i \cdots C g j(\AA)$	$\alpha\left({ }^{\circ}\right)$
$C g A$	$C g C^{\mathrm{i}}$	$3.722(1)$	$0.27(13)$
$C g A$	$C g D^{\mathrm{ii}}$	$3.885(1)$	$18.56(11)$
$C g B$	$C g B^{\mathrm{i}}$	$3.427(1)$	$0.00(15)$
$C g B$	$C g D^{\mathrm{ii}}$	$3.811(1)$	$18.75(12)$
$C g C$	$3.841(1)$	$0.00(15)$	

Symmetry codes: (i) $1-x, 1-y,-z$; (ii) $-x, 2-y,-z$.

Data collection

Enraf-Nonius CAD-4
diffractometer
$\theta / 2 \theta$ scans
Absorption correction: analytical
(Alcock, 1970)
$T_{\text {min }}=0.689, T_{\text {max }}=0.959$
6538 measured reflections
6193 independent reflections
4032 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.147$
$S=1.04$
6193 reflections
498 parameters
H -atom parameters constrained
$R_{\text {int }}=0.015$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=71.9^{\circ}$
$h=-12 \rightarrow 12$
$k=-13 \rightarrow 0$
$l=-18 \rightarrow 17$
3 standard reflections
every 200 reflections
frequency: 60 min
intensity decay: 2%

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.065 P)^{2} \\
&+0.4238 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 3
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$ for (II d).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C10-H10 $\cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.50	$3.418(3)$	168
C33-H33 ${ }^{\mathrm{H}} \mathrm{O}^{\mathrm{i}}$	0.93	2.58	$3.320(3)$	137
C30-H30 O^{i}	0.93	2.42	$3.322(3)$	164

Symmetry code: (i) $2-x, 1-y,-z$.
Table 4
Geometry of short $C g \cdots C g$ ring interactions for (II d).
$C g i$ and $C g j$ denote the centres of gravity for rings i and j in (II d), and α is the dihedral angle between the planes of rings i and j.

$C g i$	$C g j$	$C g i \cdots C g j(\AA)$	$\alpha\left({ }^{\circ}\right)$
$C g A 1$	$C g C 2^{\text {ii }}$	$3.686(1)$	$5.17(11)$
$C g A 2$	$C g D 2^{\text {iii }}$	$3.874(1)$	$15.66(15)$
$C g B 1$	$C g B 1^{\mathrm{i}}$	$3.464(1)$	$0.00(14)$
$C g C 1$	$C g A 1^{\mathrm{i}}$	$3.753(1)$	$1.86(12)$
$C g C 1$	$C g A 2^{\text {ii }}$	$3.587(1)$	$6.77(11)$
$C g C 2$	$C g B 2^{\text {iii }}$	$3.525(1)$	$1.82(11)$

Symmetry codes: (i) $1-x, 2-y,-z$; (ii) $1-x, 1-y,-z$; (iii) $2-x, 1-y,-z$.

Compound (IIf)

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=322.28$
Monoclinic, $P 2_{1} / c$
$a=4.918$ (2) \AA
$b=11.978$ (6) \AA
$c=24.659$ (5) \AA
$\beta=96.65$ (2) ${ }^{\circ}$
$V=1442.8(10) \AA^{3}$
$Z=4$
Data collection
Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.672, T_{\text {max }}=0.900$
4511 measured reflections
2816 independent reflections
1160 reflections with $I>2 \sigma(I)$
$D_{x}=1.484 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=30-38^{\circ}$
$\mu=1.08 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, yellow
$0.40 \times 0.10 \times 0.10 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.057 \\
& \theta_{\max }=71.9^{\circ} \\
& h=-6 \rightarrow 0 \\
& k=-14 \rightarrow 10 \\
& l=-30 \rightarrow 30 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \text { frequency: } 60 \text { min } \\
& \text { intensity decay: } 6 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.249$
$S=0.98$
2816 reflections
209 parameters
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1307 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.26 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 5
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$ for (IIf).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{O1}^{\mathrm{i}}$	0.97	2.60	$3.309(6)$	130

Symmetry code: (i) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.

In all three compounds, the trifluoromethyl groups present very large ellipsoids. In two cases, for (I d) and (II $d B$), a disordered model with the trifluoromethyl group distributed over two sites could be defined, whereas no satisfactory models could be defined for (II $d A$) and (IIf). The disordered models were constrained to have chemically reasonable dimensions, whereas restraints on the anisotropic displacement parameters were used for all trifluoromethyl groups. The H atoms were introduced geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.96 \AA$ and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

For all three compounds, data collection: CAD-4 EXPRESS (Enraf-Nonius, 1995); cell refinement: CAD-4 EXPRESS. For compounds (Id) and (IId), data reduction: PLATON (Spek, 2003). For compound (IIf), data reduction: HELENA (Spek, 1997). For all three compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN1056). Services for accessing these data are described at the back of the journal.

References

Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, p. 271. Copenhagen: Munksgaard.

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Enraf-Nonius (1995). CAD-4 EXPRESS. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kneubühler, S., Carta, V., Altomare, C., Carotti, A. \& Testa, B. (1993). Helv. Chim. Acta, 76, 1956-1963.
Kneubühler, S., Thull, U., Altomare, C., Carta, V., Gaillard, P., Carrupt, P. A., Carotti, A. \& Testa, B. (1995). J. Med. Chem. 38, 3874-3883.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Ooms, F., Frédérick, R., Durant, F., Petzer, J. P., Castagnoli, N., Van der Schyf, C. J. \& Wouters, J. (2003). Bioorg. Med. Chem. Lett. 13, 69-73.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: \ddagger Present address: Department of Pharmacy, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium.
 § Present address: Euroscreen SA, 47 rue Adrienne Boland, B- 6041 Gosselies, Belgium.

 - Present address: IRMW, 1 avenue E. Gryson, B-1070 Brussels, Belgium.

